报告题目:Potential multi-scale finite-time blowups of the incompressible Euler equations
报告人:黄得(北京大学)
报告时间:2024年4月20日08:00-09:30
报告地点:数统学院208(腾讯会议 932 495 5583)
邀请单位:bat365在线登录入口
报告内容简介:
It remains an open problem whether the 3D incompressible Euler equations can develop finite-time singularity from smooth initial data in the whole space. Recent numerical results indicate the potential existence of self-similar finite-time blowups with multi-scale features. Different from the conventional one-scale blowup that has been established for many models of the 3D Euler equations, this new type of blowup is closely related to traveling wave solutions and may provide a new approach to studying Euler singularity. We will first present some related numerical findings, and then we will show that multi-scale self-similar blowups can be proved analytically for a simple model of the 3D Euler equations.
报告人简介:
黄得,北京大学数学科学学院研究员。2015年获北京大学学士学位、物理双学位,2020年获美国加州理工学院应用数学博士学位,2022年入选海外优青项目。主要研究领域是流体偏微分方程和随机矩阵理论,着重于Navier-Stokes方程和Euler方程的爆破问题, 及涉及随机矩阵算法的应用问题。目前已在包括《Comm. Pure Appl. Math.》,《Adv. Math》,《Ann. PDE.》,《Comm. Math. Phys.》等国际著名SCI数学期刊上发表论文10余篇。