bat365在线登录入口
  • 常安

  • 职称:

    教授

  • 职务:

    博士生导师

  • 主讲课程:

    高等代数、组合数学、图论

  • 研究方向:

    图论及其应用

  • 办公室:

    数计学院4号楼A301

  • 电子邮件:

    anchang@fzu.edu.cn

个人简介

常安,男,博士研究生毕业,教授,博士生导师。1983年6月毕业于青海师范大学,获学士学位学位;1990年获新疆大学硕士学位;1998年6月毕业于四川大学,获博士学位。主要从事图论领域中的图与超图谱理论及其应用等方向的基础理论研究。目前的研究工作主要集中在超图的张量谱理论及其应用研究方面。至今已在国内外专业期刊发表研究论文70余篇,曾经作为主要研究成员参加了2项国家“973”课题和10多项国家自然科学基金项目的研究工作,并主持多项国家或省级科研项目。1995年获青海省科技进步三等奖,2004年获福建省科学技术二等奖。

承担或参加的科研项目

 1. 2022.1-2025.12 基于张量及其谱理论的若干超图问题研究,国家自然科学基金面上项目(主持)

 2. 2021.01-2024.12 图的最大割及其相关问题研究,国家自然科学基金面上项目(参加)

 3. 2017.1-2020.12 图与超图若干划分问题研究, 国家自然科学基金面上项目(参加)

 4. 2015.1-2018.12 超图的张量表示及其谱理论研究 国家自然科学基金面上项目(主持)

 5. 2014.1-2018.12 网络设计中的离散数学方法 国家自然科学基金重点项目(参加)

 6. 2010.11-2015.10 大规模集成电路物理设计中关键应用数学理论和方法 国家科技部“973”课题

(参加)

 7. 2006.9-2011.8 大规模集成电路设计中的图论与代数方法国家科技部“973”课题(参加)

 8. 2010.1-2013.12 极值图论 国家自然科学基金重点项目(参加)

 9. 2005.1-2008.12 子图覆盖与子图存在性的若干问题 国家自然科学基金重点项目(参加)

 10. 2009.1-2011.12 图与超图谱理论的若干应用问题研究 国家自然科学基金面上项目(主持)

 11. 2004.1-2006.12 整数流、子图覆盖与代数图论 国家自然科学基金面上项目(参加)

 12. 2003.1-2004.12 图论在数学化学中的应用 国家自然科学基金面上项目(参加)

 13. 2000.1-2002.12 图、多面体与数学化学 国家自然科学基金面上项目(参加)

 14. 2005.9-2007.8 图的若干拓扑指标及相关问题的研究 福建省自然科学基金(主持)

 15. 2002.1-2004.12 某些分子图类能量及度距离问题的研究 福建省教育厅科技项目(主持)

 16. 1999-2001 特殊分子图类的拓扑性质研究 福建省教育厅科技项目(主持)

获奖成果

  • 图论研究中的若干问题,2004年福建省科学技术奖二等奖(1)

  • 图的色等价与色唯一性,1995年青海省科技进步三等奖(2)

  • Bounds on the second largesteigenvalueof a tree with perfectmatchings,福建省第五届自然科学优秀论文二等奖

已发表的主要研究论文

[1] Guorong Gao, An ChangYuan Hou, Spectral radius on linear r-graphs without expanded Kr+1 , SIAM J. 

Discrete Math, Vol. 36 (2022), No. 2, 1000-1011.

[2] Chen, Bin,Chang, AnTurán number of 3-free strong digraphs with out-degree restrictionDiscrete 

Applied Mathematics314 (2022), 252-264.

[3] Yuan Hou, An Chang, Joshua Cooper,  Spectral extremal results for hypergraphs, The Electronic Journal of 

Combinatorics, 28(3) (2021), #P3.46.

[4] Bin Chen, An Chang,  3-Free Strong Digraphs with the Maximum Size, Graphs and Combinatoric, 37(2021), No.6, 25352554.

[5] Bin Chen, An Chang,  Diameter three orientability of bipartite graphs, The Electronic Journal of 

Combinatorics, 28(2) (2021), #P2.25.

[6] Guorong Gao, An ChangA linear hypergraph extension of the bipartite Turán problemEuropean 

Journal of Combinatorics932021),103269.

[7] Yuan Hou, An Chang, Chao Shi, On the α-spectra of uniform hypergraphs and its associated graphs, Acta Mathematica Sinica,Vol. 36, No. 7, (2020), 842–850.

[8] Wei Li, An Chang,  The effect on the spectral radius of r-graphs by grafting or contracting edges, Linear 

Algebra and its Applications597, (2020) ,117.

[9] Yuan Hou, An Chang, Lei ZhangA homogeneous polynomial associated with general hypergraphs and 

its applicationsLinear Algebra and its Applications591, (2020) ,7286.

[10] Sarula Chang , An Chang, Yirong ZhengThe leaf-free graphs with nullity 2c(G) – 1Discrete Applied Mathematics277 (2020), 44-54.

[11] Lei Zhang, An ChangSpectral radius of r-uniform supertrees with perfect matchings, Front. Math. China, 2018, 13(6): 1489-1499.

[12] Yuan. Hou, An Chang, Lei ZhangLargest H-eigenvalue of uniform s-hypertrees, Frontiers of 

Mathematics in China, Vol. 13 (2018) , No.2, 301-312.

[13] Deng, Bo, An, Chang, Zhao, Haixing, Spectral determination of a class of tricyclic graphs. Ars Combin.131(2017),123–141.

[14] Wei Li, Joshua Cooper and An Chang, Analytic connectivity of k-uniform hypergraphs, Linear and 

Multilinear Algebra, (2017), no. 6, 1247–1259

[15] Wei Li, An Chang, Upper Bounds for the Z-spectral Radius of Nonnegative Tensors, ADVANCES IN 

MATHEMATICS (CHINA), Vol.45, No.6 (2016), 912-918.

[16] Sa Rula, An Chang, and Yirong Zheng, The extremal graphs with respect to their nullity, Journal of 

Inequalities and Applications, (2016), Paper No. 71, 13 pp.  

[17] Yirong Zheng, An Chang and Jianxi Li, On the sum of the two largest Laplacian   eigenvalues of unicyclic graphs, Journal of Inequalities and Applications, (2015), Paper No. 275, 8 pp.  

[18] Wei LiAn ChangThe minimal Laplacian spectral radius of trees with given matching numberLinear and Multilinear AlgebraVol.622014,No.2, 218-228.  

[19] Jinshan XieA. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hyper-

graph, Numerical Linear Algebra with Applications, 2013, 201030-1045

[20] Jinshan XieA. Chang, On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs, Linear 

Algebra and its Applications4392013, 2195-2204

[21] B. Deng, A. Chang, Maximal Balaban index of Graphs, MATCH Commun. Math. Comput. Chem. Vol. 70 (2013) , No.1259-286

[22] J. Li, W. C. Shiu, A. Chang:The Laplacian Spectral Radius of GraphsCzechoslovak Mathematical 

Journal60(135) (2010), no. 3, 835–847.

[23] J. Li, W. C. Shiu, A. Chang: The number of spanning trees of a graphApplied Mathematics Letters23 (2010) 286-290

[24]  An Chang, W. C. Shiu, On the kth Eigenvalues of Trees with Perfect MatchingsDiscrete Mathematics 

and Theoretical Computer Science, Vol.9(1) (2007), 321-332.

[25] Wenhuan Wang, An Chang, Lianzhu Zhang, Dongqiang Lu, Unicyclic Hückel molecular graphs with 

minimal energy,  J. of Mathematical Chemistry392006),No.1, 231-241 .

[26] Wei Li, An Chang, On the trees with maximum nullity, MATCH Commun. Math. Comput. Chem. 56(2006), 501-508.

[27] Ailian Cnen, An Chang, Wai Chee Shiu, Energy ordering of unicyclic graphs, MATCH Commun. Math. 

Comput. Chem. 55(2006), 95-102.

[28]  An Chang, Feng Tian, Aimei Yu, On the index of bicyclic graphs with perfect matchings, Discrete Mathematics2832004),51-59.

[29]  An Chang, On the largest eigenvalue of a tree with perfect matchings, Discrete Mathematics2692003),45-63.

[30]  An Chang, Qunxiang Huang, Ordering trees by their largest eigenvalues, Linear Algebra and its 

Applications, 3702003),175-184.

[31]  An Chang, Feng Tian,  On the spectral radius of uncyclic graphs with perfect matchings, Linear Algebra 

 and its Applications, 3702003),237-250.

[32] Qunxiang Huang, An Chang,  Circulant digraphs determined by their spectra, Discrete Mathematics, 240(1-3), (2001), 261-270.

[33] Fuji Zhang, An Chang,  Acyclic molecules with greatest HOMO-LUMO separation, Discrete Applied 

Mathematics, 98 (1999), 165-171.

[34]  An Chang,  Bounds on the second largest eigenvalue of a tree with perfect matchingsLinear Algebra 

and its Applications, 283(1-3 ), (1998), 247-255.

Baidu
sogou